S (set theory) - definizione. Che cos'è S (set theory)
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è S (set theory) - definizione


S (set theory)         
AXIOMATIC SET THEORY
S (Boolos 1989)
S is an axiomatic set theory set out by George Boolos in his 1989 article, "Iteration Again". S, a first-order theory, is two-sorted because its ontology includes “stages” as well as sets.
axiomatic set theory         
  • [[Georg Cantor]]
BRANCH OF MATHEMATICS THAT STUDIES SETS, WHICH ARE COLLECTIONS OF OBJECTS
Axiomatic Set Theory; SetTheory; Set Theory; Formal set theory; Axiomatic set theory; Theory of sets; Ordinary set theory; Set theorist; Classical set theory; Set-theoretic; Axioms of set theory; Axiom of set theory; Axiomatic set theories; Transfinite set theory; Abstract set theory; Mathematical set theory; Set theory (mathematics); Applications of set theory; History of set theory
<theory> One of several approaches to set theory, consisting of a formal language for talking about sets and a collection of axioms describing how they behave. There are many different axiomatisations for set theory. Each takes a slightly different approach to the problem of finding a theory that captures as much as possible of the intuitive idea of what a set is, while avoiding the paradoxes that result from accepting all of it, the most famous being Russell's paradox. The main source of trouble in naive set theory is the idea that you can specify a set by saying whether each object in the universe is in the "set" or not. Accordingly, the most important differences between different axiomatisations of set theory concern the restrictions they place on this idea (known as "comprehension"). Zermelo Frankel set theory, the most commonly used axiomatisation, gets round it by (in effect) saying that you can only use this principle to define subsets of existing sets. NBG (von Neumann-Bernays-Goedel) set theory sort of allows comprehension for all formulae without restriction, but distinguishes between two kinds of set, so that the sets produced by applying comprehension are only second-class sets. NBG is exactly as powerful as ZF, in the sense that any statement that can be formalised in both theories is a theorem of ZF if and only if it is a theorem of ZFC. MK (Morse-Kelley) set theory is a strengthened version of NBG, with a simpler axiom system. It is strictly stronger than NBG, and it is possible that NBG might be consistent but MK inconsistent. set theoryholmes/holmes/nf.html">NF (http://math.boisestate.edu/axiomatic set theoryholmes/holmes/nf.html) ("New Foundations"), a theory developed by Willard Van Orman Quine, places a very different restriction on comprehension: it only works when the formula describing the membership condition for your putative set is "stratified", which means that it could be made to make sense if you worked in a system where every set had a level attached to it, so that a level-n set could only be a member of sets of level n+1. (This doesn't mean that there are actually levels attached to sets in NF). NF is very different from ZF; for instance, in NF the universe is a set (which it isn't in ZF, because the whole point of ZF is that it forbids sets that are "too large"), and it can be proved that the Axiom of Choice is false in NF! ML ("Modern Logic") is to NF as NBG is to ZF. (Its name derives from the title of the book in which Quine introduced an early, defective, form of it). It is stronger than ZF (it can prove things that ZF can't), but if NF is consistent then ML is too. (2003-09-21)
set theory         
  • [[Georg Cantor]]
BRANCH OF MATHEMATICS THAT STUDIES SETS, WHICH ARE COLLECTIONS OF OBJECTS
Axiomatic Set Theory; SetTheory; Set Theory; Formal set theory; Axiomatic set theory; Theory of sets; Ordinary set theory; Set theorist; Classical set theory; Set-theoretic; Axioms of set theory; Axiom of set theory; Axiomatic set theories; Transfinite set theory; Abstract set theory; Mathematical set theory; Set theory (mathematics); Applications of set theory; History of set theory
<mathematics> A mathematical formalisation of the theory of "sets" (aggregates or collections) of objects ("elements" or "members"). Many mathematicians use set theory as the basis for all other mathematics. Mathematicians began to realise toward the end of the 19th century that just doing "the obvious thing" with sets led to embarrassing paradoxes, the most famous being {Russell's Paradox}. As a result, they acknowledged the need for a suitable axiomatisation for talking about sets. Numerous such axiomatisations exist; the most popular among ordinary mathematicians is Zermelo Frankel set theory. {set theoryhistory/HistoryTopics.html">The beginnings of set theory (http://www-groups.dcs.st-and.ac.uk/set theoryhistory/HistoryTopics.html)}. (1995-05-10)

Wikipedia

S (set theory)
S is an axiomatic set theory set out by George Boolos in his 1989 article, "Iteration Again". S, a first-order theory, is two-sorted because its ontology includes “stages” as well as sets.